Providing Solutions for Tomorrow’s Environment

Fundamentals of Sour Water Stripping

Presented at the Brimstone Sulfur Symposia
Vail, Colorado, September 2008

David K. Stevens
President & CEO

Alan Mosher
Director of Engineering
Outline

- Sources and Characteristics of Sour Water
 - Sour Gas Processing
 - Refining Processes
 - Claus Tail Gas Treating
 - Gasification and Similar Processes
- Processing SWS Offgas in SRU/TGUs
- Alternatives Strategies for Sour Water and Sour Gas

Sources and Characteristics of Sour Water

- Sour Gas Processing
- Oil Refining
- Gasification and Other Thermal Process
- Claus Tail Gas Units
Sour Gas Processing
Sources of Sour Water

- Wellhead Facilities
 - Dry or Wet Pipeline
- Plants
 - Inlet Separators
 - Liquid KO Drums
 - Dehydration Unit
 - Claus Plant
 - Compressor Aftercoolers

Providing Solutions for Tomorrow’s Environment

Sour Gas Processing
Sources of Sour Water (cont.)

- Plants (cont.)
 - Dehydration Processes
 - Glycol Regen Condensate
 - Solid Bed Absorbent Dehydrator Regen
 - Gas Treating Units – Reflux Purge
 - Tail Gas Units – Quench Water

Providing Solutions for Tomorrow’s Environment
Sour Gas Processing Characteristics

- Two Types of Sour Water
 - Produced Water
 - Water that originates in the reservoir and flows up the tubing with the gas
 - Condensed Water
 - “Salt-free Water” that condenses from the gas after the gas has left the producing reservoir

Produced Water Characteristics

- Originates in Reservoir
- Generally Removed in Inlet Separator
- H₂S and CO₂
- Salt-Bearing
 - Anions: Chlorides, Bromides, Sulfates
 - Cations: Potassium, Sodium, Magnesium
Produced Water Characteristics (cont.)

- Hydrocarbons
- Methanol/Hydrate Inhibitors
- Corrosion Inhibitors
- Hydrocarbons

Produced Water Processing

- Injection Well with Filtration
 - Local
 - Remote (Trucked)
- Stripping
 - Steam Injection or Steam Reboiler
 - Gas – Avoids Salting Out Potential
Produced Water Processing (cont.)

- Offgas Disposal
 - Flare
 - Low Tonnage Sulfur Recovery
 - Recompression to Pipeline
- Evaporation Ponds
 - Salt Presence

Condensed Water Characteristics

Condensed After Gas has Left Reservoir
“Salt Free”

- H₂S and CO₂
- Hydrocarbons
- Iron Sulfides
- Amines
- Glycols
- Methanol
- Other Hydrate Inhibitors
- Corrosion Inhibitors
Condensed Water Processing

- **Stripping**
 - Steam Injection or Steam Reboiler
 - Gas

- **Disposal of Offgas**
 - Flare
 - Claus Plant
 - Integrate with Tail Gas Quench

Condensed Water Processing (cont.)

- **Disposal of Stripped Sour Water**
 - Injection Well
 - Evaporation Pond
 - Upgrade to BFW
Some Approaches to Sour Water Stripping in Sour Gas Processing Plants

- Integrate a Sour Water Stripper with a Tail Gas Quench System
- Re-use of Tail Gas Quench Water as Boiler Feed Water

Integrated Sour Water Stripper with Tail Gas Quench
Reuse of Quench Water for BFW

Oil Refining – Sources of Sour Water

- Desalters
- Crude/Vacuum Units
- Hydrotreaters
- FCCs
- Thermal Cracking
- Hydrocracking
- Amine Treating
- Claus Tail Gas Units
Oil Refining – General Trends

- Higher Sulfur and Nitrogen Content Crudes
- Deeper Levels of Hydroprocessing
- Generate Higher Levels of Sour Water

General Characteristics of Refinery Sour Water

- “Typical” Concentrations
 - H_2S 300 to 12,000 ppm (wt)
 - NH_3 100 to 8,000 ppm (wt)
- Molar Ratio NH_3:H_2S
 - Between 1.0 and 2.0
 - Typical 1.1 to 1.4
- Typical pH between 8 and 10
- Sour Water pH dictates NH_3:H_2S Ratio
Refinery Sour Water

- Range of Potential Contaminates

 | Phenol | Organic Acids | Hydrocarbon |
 | Cyanide | Caustic | Chloride |
 | Selenium | Mineral Acids | Hardness |

How the Bad Actors Behave

- Acidic Anions: Chlorides, Sulfates, Formates
 - Depress pH
 - Tie-up Ammonium Ion

- Alkali Cations: Sodium, Potassium
 - Raise pH
 - Tie-up Sulfide Ion

- Phenols – Not readily strippable
- Cyanide – Corrosive; use of polysulfides to form thiocyanate
- Naphthenic and Cresylic Acids
How the Bad Actors Behave (cont.)

- Heavier Hydrocarbons – Multiple problems; Can polymerize
- Carbon Dioxide – Lower pH and tie-up Ammonia
- Calcium – Can precipitate as hardness in stripper
- Oxygen – Egress can form acid which fix Ammonia
- Amine – Can tie-up Ammonia
- Selenium – Can precipitate and foul stripper

The Problem with Phenols

- Phenols are not removed due to solubility characteristics – not tray efficiencies
- Phenolic – Bearing Units (With Other Contaminates such as Cyanides and Colloidal Sulfur)
 - Cokers
 - Crude Units
 - FCCs
 - ARUs and TGU Purge
The Problem with Phenols (cont.)

- Non-Phenol Bearing Units
 - Hydrotreaters
 - Desulfurization Units

Chemistry of Refinery Sour Water

- “Sour Water” forms as Water and Hydrocarbon are in contact and partition the Hydrogen Sulfide and Ammonia in accordance with Henry’s Law
- The Ammonia and Hydrogen Sulfide dissolved in the now “Sour Water” ionize to the equilibrium extent according the pH and temperature
Chemistry of Refinery Sour Water (cont.)

- Ammonia and Hydrogen Sulfide can only be stripped if in parent gaseous form, i.e. exerting a partial pressure. The ionized components do not strip.
- Presence of ions which raise the pH tie-up Sulfides and aid Ammonia stripping.
- Conversely presence of ions which lower the pH tie-up the Ammonia and aid Sulfide stripping.

Approach to Sour Water Management in the Oil Refinery

- Stripped Sour Water Specifications
- Re-use Strategy
- Feed Preparation
- Sour Water Stripper
- Sour Water Offgas Disposal
Stripped Sour Water Specifications

- Typical WWTP Influent Requirements
 - 25 ppm Ammonia
 - 10 ppm Hydrogen Sulfide
- Lower specs are often observed
- Benzene Waste NESHAPS

Sour Water Reuse

- Recycle All Stripped Sour Water to Desalter or Coker
- Segregate Phenolic and Non-Phenolic Sour Water
 - Recycle Non-Phenolic to Hydrotreaters/Desulfurizers
 - Hydrotreaters can’t tolerate Phenols
 - SWS only removes 10 to 50 % of Phenol
- Recycle Phenolic Sour Water to Desalter were Oil extracts the Phenolic Compounds
Sour Water Feed Preparation

- Inlet Feed Separation and Hydrocarbon Flash and Skimming
 - Vent to Safe Location
- Sour Water Feed Surge
 - 3-Day Storage Target
 - Oil Skim
 - Design to Prevent Short Circuit

Sour Water Stripper Design

- Non-Refluxed
 - Direct Steam Injection or Reboiler
 - Very High Water Content of Offgas
 (70+% vol @ 13 psig)
- Refluxed
 - Direct Steam Injection or Reboiler
 - Overhead Condenser or Pump Around
 - Conventional Practice (40+% vol @ 13 psig)
Conventional Sour Water Stripper Practice: Oil Refinery

- Two Main Design Choices – Pros/Cons
 - Pump Around vs. Overhead Condenser
 - Direct Steam Injection vs. Reboiler
- General Trends
 - Steam to Feed Ratio
 - Feed Tray Location
 - Feed Concentration
 - Steam Cost and Number of Trays
 - Caustic Injection and Chlorides

Conventional Overhead Condenser
Sour Water Stripper Design Approach

- Materials of Construction
 - CS was predominant choice in the day
 - Overhead Line was most often upgraded
 - Current designs upgrade – especially as function of feed

- Simulation Basis
 - Sour – Pro/II
 - GPA Sour – Pro/II
 - OLI Electrolyte – Pro/II (caustic injection studies)

- Elusive Phenol Removal Process?
Sour Water Stripper Design Approach (cont.)

- **Design Basis Issues**
 - Don’t Over Estimate Feed Sourness
 - Tower Stability and Control Problems
 - MOC Upgrade Creep
 - Design Margin Creep

- **Nice to Haves**
 - Can’t have enough hydrocarbon skimming capability
 - Likewise with surge and storage – but be reasonable
 - Dual Reboilers
 - Live Steam Injection
 - Some degree of redundancy/overcapacity for catch-up and addressing the inevitable fouling episode(s)
Sour Water Offgas Disposal

- Flare - Back-up and Limited
- Fired Heaters
 - Direct Combustion of SWS Offgas
 - Separate NH\textsubscript{3} from H\textsubscript{2}S and Burn Ammonia in Heater
- Claus SRUs
 - The Most Common Approach
 - And the Most Interesting

Separate Ammonia from Hydrogen Sulfide

- Most common approach in refinery application is Chevron WWT
- Two Column Operation
- Ammonia can be recovered
 - Aqueous
 - Anhydrous
- Main Concerns
 - CAPEX (Due to Equipment Count and MOC)
 - Complexity
 - Ammonia Sales
Sour Water From Claus Tail Gas Treating

- Sour Water Produced from Quench
- Claus / Tail Gas Feeds
- Components
 - H₂S
 - NH₃
 - CO₂
- Production Characteristics
 - 100 LTPD S Generates 10.5 gpm Sour Water
 - 100 STPD Ammonia Generates 40.5 gpm Sour Water
Calculated Effect of Sour Water Stripper Offgas in Claus SRUs on Quench Water Purge

- Graph 1: Continous Quench Water Purge, gpm vs. % NH₃ (vol) in Total Amine Acid Gas plus SWS Offgas (Constant 100 ETPD)

- Graph 2: Continous Quench Water Purge, gpm vs. % NH₃ (vol) in Total Amine Acid Gas plus SWS Offgas (100 LTPD Amine Acid Gas)
Gasification and Other Similar Processes

- Gases derived from Coal
 - Producer Gas
 - Water Gases
- Coke Oven Gas
 - By-product of Coal Coking
- Coal or Pet Coke Gasification
 - Syngas for Power
 - Ammonia
 - Synthetic Natural Gas

Sour Water From Gasification and Other Similar Processes

- Ammonia and Cyanides Produced During the Thermal Processing are present in the coal-derived gas
 - Up to 1% vol Ammonia
 - 0.1 to 0.25% vol Hydrogen Cyanide
- Processes Available to Remove the Ammonia directly from the Coal-Derived Gas
Sour Water From Gasification and Other Similar Processes (cont.)

- Typical Thermal Processing involves some form of Water Quench or Scrubber
 - The Sour Water contains all the Ammonia and some of the Hydrogen Sulfide from the coal-derived gas
 - Other water soluble components like organic acids and phenols are present

Some Interesting Processes from the Coal Gas Industry Practices & Experience

- Direct Ammonia Removal Processes
 - React with Strong H$_2$SO$_4$ or H$_3$PO$_4$ to Produce Ammonium Sulfate or Ammonium Phosphate and Acid Gas
 - Phosam Process to Separate NH$_3$ and Acid Gases from the Gas Stream
Some Interesting Processes from the Coal Gas Industry Practices & Experience

- Ammonia Processing After Water Scrubbing and Sour Water Stripping
 - Catalytic Destruction of NH₃ in Presence of H₂S
 - Oxidation of NH₃ and H₂S in Claus Plant or Incinerator

Ammonium Sulfate or Ammonium Phosphate
Phosam Process

Catalytic NH₃ Destruction and Sulfur Recovery
Even More Interesting Processes from the Coke-Oven Gas Processing Industry

- Process for Ammonia Removal and Recovery from Ammonia Bearing Acid Gas
- Processes for Ammonia and Hydrogen Sulfide Removal Using Ammonia
Chemistry of Ammonia-Based Processes for H₂S and CO₂ Removal

- **Hydrogen Sulfide**

 \[
 2 \text{NH}_3 (g) + \text{H}_2\text{S} (g) \rightarrow (\text{NH}_4)_2 \text{S}
 \]

 \[
 \text{NH}_3 (g) + \text{H}_2\text{S} (g) \rightarrow (\text{NH}_4) \text{HS} (aq)
 \]

- **Carbon Dioxide**

 \[
 2 \text{NH}_3 (g) + \text{CO}_2 (g) + \text{H}_2\text{O} (l) \rightarrow (\text{NH}_4)_2 \text{CO}_3 (aq)
 \]

 \[
 2 \text{NH}_3 (g) + \text{CO}_2 (g) \rightarrow \text{NH}_4 \text{CO}_2 \text{NH}_2 (aq)
 \]
Sour Water Offgas to Claus SRUs

- Normally can process up to 2 – 4% (vol) ammonia in Claus SRU without modification to a conventional straight-through design.
- Above this level need additional design considerations: preheat, two-zone thermal reactor etc.
- Over 25% (vol) ammonia in total feed gases need to address potential NO\textsubscript{x} formation.

Sour Water Offgas to Claus SRUs (cont.)

- Typically like to see Claus thermal reactor effluent ammonia content less than 100 ppmv.
- Some reports of Claus thermal reactor effluent ammonia up to 500 to 600 ppmv without difficulty.
- Overhead Line Temperature Maintenance.
- KO Drum
 - Contains No Demister
 - Multiple Level Devices
 - Fully Traced and Insulated
Sour Water Offgas to Claus SRUs (cont.)

- Instrument Taps
 - Large (2” or 3” on Vessel)
 - All Traced
 - Diaphragm Seals
 - Steam Outs
 - Oversized Venturi Taps

- High Level Trip
 - Isolates Sour Water Offgas Only

Sour Water Offgas to Claus SRUs (cont.)

- Mixing SWS Gas with Amine Acid Gas
 - Salt Formation
 - Under Deposit Corrosion
 - All Lines No Pocket and Top Entry
 - Minimum Distance After Mix Point
Sour Water Offgas to Claus SRUs (cont.)

- Amine Acid Gas Preheater
 - Process on Tube Side
 - BEM Axial Flow Configuration to Eliminate Pockets
 - Single Pass to Eliminate Pockets
 - Tube Sheet Material – SA-516-70 w/ 0.1875” (min.)
 - 347 SS Overlay
 - Tube Material – SA-249-TP 321 SS
 - All 321 SS Materials are Stabilized / Annealed
 - Tube to Tubesheet Joint is Rolled and Seal Welded

Providing Solutions for Tomorrow's Environment

Ammonia Salts
Solids Deposition Possibilities

- Ammonia Forms a Number Salts That Can Produce Deposits
 - Ammonium Hydrosulfide
 \[
 \text{NH}_3 + \text{H}_2\text{S} \rightarrow \text{NH}_4\text{-HS}
 \]
 - Ammonium Carbamate
 \[
 2\text{NH}_3 + \text{CO}_2 \rightarrow \text{NH}_4\text{-CO}_2\text{-NH}_2
 \]
 - Ammonium Bicarbonate
 \[
 \text{NH}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{NH}_4\text{-HCO}_3
 \]
Ammonia Salts
Solids Deposition Possibilities (cont.)

- Deposition Temperature Depends on Partial Pressures of NH₃, H₂S, CO₂ and H₂O
- Salts Typically Begin Depositing from 70 - 140°F
- Best Practice is Stay at Least 45°F Hotter than Calculated Deposition Temperature
Theoretical Impact of Processing Sour Water Stripper Offgas on Claus/Tail Gas Unit Capacity

- **Claus Reaction**

 \[\text{H}_2\text{S} + \frac{3}{2} \text{O}_2 \rightarrow \text{SO}_2 + \text{H}_2\text{O} \]

 \[2 \text{H}_2\text{S} + \text{SO}_2 \rightarrow 3\text{S} + \text{H}_2\text{O} \]

 \[3 \text{H}_2\text{S} + 3/2 \text{O}_2 \rightarrow 3\text{S} + 2\text{H}_2\text{O} \]

- **Ammonia Combustion**

 \[2\text{NH}_3 + 3/2\text{O}_2 \rightarrow 2\text{N}_2 + 3\text{H}_2\text{O} \]

- **Overall**

<table>
<thead>
<tr>
<th></th>
<th>3/2 lb mole O₂</th>
<th>2 lb mole NH₃</th>
<th>17 lb NH₃</th>
<th>1 lb mole S</th>
<th>ST NH₃</th>
<th>2240 lbs S</th>
<th>3 lb mole S</th>
<th>3/2 lb mole O₂</th>
<th>1 lb mole NH₃</th>
<th>32 lbs</th>
<th>2000 lb NH₃</th>
<th>LT S</th>
</tr>
</thead>
</table>

Calculated Effect of Processing SWS Offgas on Claus/Tail Gas Unit Capacity

- “100 tpd Claus/Tail Gas Unit”

 - **Acid Gas (vol %)**
 - 87.5% H₂S
 - 4.5% CO₂
 - 1.9% C₁
 - 6.1% H₂O

 - **SWS Offgas (vol %)**
 - 23.2% H₂S
 - 33.1% NH₃
 - 41.6% H₂O
 - 2.1% C₁
Calculated Effect of Processing SWS Offgas on Claus / Tail Gas Capacity at Constant Air Demand

![Graph showing the effect of NH3% in Total Amine Acid Gas plus SWS Offgas on DPD Sulfur Produced and LTPD Sulfur Produced.]

Calculated Effect of Processing SWS Offgas on Claus / Tail Gas Capacity at Constant Air Demand

![Graph showing the relationship between % NH3 (vol) in Total Amine Acid Gas plus SWS Offgas and LTPD NH3.]
Calculated Impact Analysis Based Only on Required Air Demand

What About Actual Performance Characteristics?

Simulated Effect of Processing Sour Water Stripper Offgas in Claus / Tail Gas Units

Models are from Sulsim Version 6.0. Note that Air Demand predicted by various models differs by < 5%.
Simulated Effect of Sour Water Stripper Offgas in Claus SRUs on Pressure Drop

- Claus Tail Gas velocity increases by ~12% as NH3 content is increased from 0 - 20%.
- Pressure drop is proportional to the square of the velocity.
- Pressure drop is increased by ~25% in SRU. Effect is less dramatic downstream of Quench Tower.

New Plant Construction

- Amine Acid Gas + SW Offgas
- Amine Acid Gas H2S
- ETPD Sulfur

Flowrate, brdmol/hr

% NH3 (vol) in Total Amine Acid Gas plus SWS Offgas (Constant 100 ETPD)
CAPEX Approximation

- Basic “100 tpd” Claus/Tail Gas Unit is US$25MM
 - Typical Two-Bed Claus
 - 20 or 24” Main Gas Line
 - Conventional TGU plus Incinerator

CAPEX Approximation (cont.)

- Adding Ammonia Processing
 - 5% - 115 ETPD is US$28MM (105 LTPD S & 4 STPD NH3)
 - 10% - 140 ETPD is US$31MM (115 LTPD S & 10 STPD NH3)
 - 15% - 165 ETPD is US$35MM (125 LTPD S & 16 STPD NH3)
 - 20% - 240 ETPD is US$44MM (145 LTPD S & 38 STPD NH3)
 - 25% - 350 ETPD is US$54MM (180 LTPD S & 68 STPD NH3)
What’s it Worth?

- 10% Ammonia Feed
 - Additional US$6MM CAPEX
 - OPEX?
 - Ammonia – Nearly US$3MM/Year
- 20% Ammonia Feed
 - Additional US$19MM CAPEX
 - OPEX?
 - Ammonia – Nearly Over US$11MM/Year

Alternative Sour Water Management Processes

- Ammonia Separation from Sour Water
 - Processes
 - Chevron WWT Process
 - US Steel Phosam Process
 - Uses for Recovered Ammonia
 - Recover as Anhydrous Ammonia
 - Ammonia Sulfate
 - Ammonium Thiosulphate
 - Hydrogen
Alternative Sour Water Stripper Offgas Processes

- Direct Sour Water Stripper Offgas Combustion with SO₂ Scrubbing
 - NOₓ Production?
 - John Zink “Noxidizer”
 - SCR or SNCR?
 - SO₂ Scrubbing
 - Cansolv (SO₂ Recycle)
 - Caustic
 - Ammonia (Ammonia Sulfate or Ammonia Thiosulphate)
 - Hydrogen – Can be produced from Ammonia (No Joke)

“Noxidizer” with Caustic Scrubber
SCR Combustion with SCR and Cansolv Scrubber

Ammonia Thiosulphate Production
Some Reflections on Sour Water

- There are many different approaches to managing sour water – most successful, some not with a few mysteries remaining.

Some Reflections on Sour Water (cont.)

- What is the Refiner’s Break Point to Look at Alternatives?
 - Removing Load from Claus – Options?
 - Typical Water Cost and Upgrade Complexity to BFW
 - City / Potable
 - Well
 - Surface
 - Sour Water